MICROWAVE POWER SENSOR LIMITATIONS

Doug Millar K6JEY drzarkof56@yahoo.com

Scope of Talk

RF power sensor uncertainties

Antical Season Antaon

Test equipment and measurement methods

Background

- Interest in metrology and the accuracy limits of RF power
- Considerable experience with power meters
- The arrival of a Boonton generator pushed me to explore the accuracy of sensors and their linearity.
- I was only able to resolve four digits accurately with the calorimeter.
- It turns out that is good enough.

Definitions

- **Bolometer/thermistor** Resistance changes with exposure to RF
- **Thermocouple** Voltage is generated from two dissimilar metals exposed to the heat of a load.
- **Thermopile** a series of thermocouples exposed to the heat of a load resistor.
- Diode Sensor- generates a DC voltage through diode rectification.

Traceability tools

At Boonton

- NIST Micro Calorimeter for DC substitution
- Wandel and Goltermann EPM 1 –
- Trombone attenuator at 30MHz
- Boonton 2520 .05db accuracy

• At HP

• 0dbm thermistor reference sensor. (HP 478 h75)

Micro calorimeter at NIST

Calibration is done at 30-50Mhz

Figure 2-7. Schematic cross-section of the NIST coaxial microcalorimeter at Boulder, CO. The entire sensor configuration is maintained under a water bath with a highly-stable temperature so that RF to DC substitutions may be made precisely.

Wandel and Goltermann EPM-1 1mw power meter

Boonton 2520- 30MHz, -70 to +20 DBm. Accuracy is .05db

2520 Meter Calibrator Output

- Cal output is .7% to 1.2% accuracy
- Based on Standards lab equipment at Boonton
 - Thermopile DC substitution
 - Calibrated trombone attenuator at 30MHz
 - In Cal if .988mw to 1.012mw- 1.2%
- Far exceeds the measurement accuracy.

Lab standard at HP Selected for low SWR. 10MHz to 500MHz Used price \$1,400 HP478-H75

Agilent- N432A

New Life for the HP 478 power sensors- at \$8800 Internal rather than External DVM Still have inherent inaccuracies of the sensor. SWR Sensor Linearity

AIL Type 32 Trombone Attenuator

My Lab Traceability

- DC source calibration- HP34401A DVM Calibrated to .0002%
- DC Power source- Valhalla 2700b
- Transfer standard- PRD 685 Calorimetric Thermopile (1mw= 100uv)
 Power meter - HP 8482B sensor on an HP E4418b. In Cal
 - **RF Power source- Boonton 2520** RF power calibrator. 30MHz +20to -70DBM

Accuracy .05DB or 1.2%

PRD 670 Thermopile Calorimeter .2236v (1mw) input = .1160v output

What are We Up against?

- The lab uncertainties are about 0.7% accuracy.
- The practical sources of uncertainty can push us above 10%.
- What is the list of uncertainties in measurement with a microwave power sensor?
- What factors contribute the most to inaccuracy?

Sum of Uncertainties- Worst Case

Series

	Series	Distribution	1117240027	111724420	111724120	
	Instrumentation Accuracy	Rectangular	0.50%	0.50%	0.50%	
	Sensor Linearity	Rectangular	1.80%	1.80%	1.80%	
	Noise, 256 Average	Normal at 2σ	0.01%	0.01%	0.00%	
	Zero Set and Drift	Rectangular	0.06%	0.04%	0.01%	
The real problem	Mismatch Uncertainty	Rectangular	3.67%	3.84%	4.49%	3.8% mismatch?
	Sensor Cal Factor Uncertainty	Normal at 2σ	1.60%	0.79%	0.83%	
	Reference Power Uncertainty	Rectangular	1.20%	<mark>1.20%</mark>	1.20%	
	Reference to Sensor Mismatch Uncertainty	Rectangular	0.36%	0.36%	0.44%	
	Temperature Linearity, ±20 °C	Rectangular	1.00%	1.00%	1.00%	
	RSS, Room Temperature		4.59%	4.52%	5.10%	
	Sum of Uncertainties, Room Temperature	-	9.19%	8.55%	9.27%	
	RSS ±20 °C	1	4.70%	4.63%	5.20%	
	Sum of Uncertainties ±20 °C	-	10.19%	9.55%	10.27%	

Distribution | MA24002A | MA2442D | MA2472D

Figure 8-1. RSS uncertainty vs. dynamic power range from data sheet specs for source SWR = 1.15 (ρ s =0.07) and f = 2 GHz: (a) Analog thermistor mount system. (b) E4418B digital power meter system using 8481D diode and 8481A thermocouple sensors. (c) E4418B digital power meter and E4412A PDB extended-range sensor. RSS-combining method is the same as used in Chapter VII.

Mismatch and Accuracy

- The SWR of both the source and sensor have to be
- Below 1.10:1 in order to add no more than .5% error to the reading. (20DB RL)
- At 1.2 SWR the Inaccuracy is 1.5% (9DB RL)
- Anything higher at either end due to any factor, and the inaccuracy skyrockets.
- Sensor SWR and generator SWR are key to the accuracy problem.

Figure 8-2. A comparison of specified SWR limits for the 8478B thermistor mount, 8481A thermocouple power sensor, 8481D PDB power sensor, and E4412A PDB sensor.

Cal Factor/SWR vs Frequency for HP 18 GHz Sensor

Accuracy Losses

- 0.5% Meter- fixed
- 4.5% Temperature- variable 1%?
- 1.8% Sensor Linearity- fixed
- 3.8% Mismatch loss- 1-2%
- <u>1.2%</u> Calibrator calibration .7% more likely
- 11.8% total uncertainty of reading worst case.
- With some attention to detail, 6% is more like it.

Perspective

- Modern meters like the E4418b/E4412a & Anritsu ML3437a
 - Use averaging through DSP
 - Have stored factors in the sensor
 - Compensate for temperature
 - Use computers to characterize both the meter and sensor.
- The N432A is in a class by itself.
- Modern meters may constrain the errors to 5%.
- Meters like the HP 436 may do a pretty good job if you have a calibrated sensor, esp. with an external DVM
- Note- dropping the sensor or applying too much power, even for a second, can completely change the sensor linearity and accuracy

Conclusion

- SWR of the load and sensor are key factors
- Sensor Linearity is largely unknown
- An old meter(HP436) with a great sensor is better than a great meter with a cheap sensor.

Resources

- HP Application Note on RF Power Measurement
- 64-1C
- PRD Calorimeter Manuals 680 series.
- Anritsu manual on 2400 power sensors
 - <u>https://www.atecorp.com/ATECorp/media/pdfs/data-sheets/Anritsu-MA2400-Series_Manual.pdf</u>
 - Modern Microcalorimeters and their status
 - <u>https://pdfs.semanticscholar.org/4543/4397d49049c5aff02605cf46c</u>
 <u>20e</u>
 - <u>https://pdfs.semanticscholar.org/4543/4397d49049c5aff02605cf46c</u>
 <u>20ee1f70db9.pde1f70db9.pdf</u>
 - Download the talk athttp://www.nitehawk.com/k6jey/k6jey_dwnload.html

Questions?

Thanks very much!

Sensor Linearity Record .05db/1.2%

Table 5-3a.	Calibrator Linearity - High Power Range				
Cal Level (dBm)	Minimum (dBm)	Measured (dBm)	Maximum (dBm)		
20.0	19.84		20.16		
15.0	14.84		15.16		
10.0	9.84		10.16		

Table 5-3b.	Calibrator Li	nearity - Low Po	ower Range
Cal Level (dBm)	Minimum (dBm)	Measured (dBm)	Maximum (dBm)
5.0	4.9	<u></u>	5.1
-5.0	-5.1		-4.9
-10.0	-10.16		-9.84
-15.0	-15.16		-14.84
-20.0	-20.25		-19.75
-25.0	-25.25		-24.75
-30.0	-30.25		-29.75